Approximate graph clustering for program characterization
نویسندگان
چکیده
منابع مشابه
Approximate Greedy Clustering and Distance Selection for Graph Metrics
In this paper, we consider two important problems defined on finite metric spaces, and provide efficient new algorithms and approximation schemes for these problems on inputs given as graph shortest path metrics or high-dimensional Euclidean metrics. The first of these problems is the greedy permutation (or farthest-first traversal) of a finite metric space: a permutation of the points of the s...
متن کاملApproximate Clustering
Clustering is the task of partitioning a given set of objects so that similar objects belong to the same group. This general idea is extremely useful in unsupervised learning where little to no prior knowledge about the data is available. Clustering is usually the first data analysis technique employed when analysing big data. The importance of clustering and its applications may be found in a ...
متن کاملApproximate Range Queries for Clustering
We study the approximate range searching for three variants of the clustering problem with a set P of n points in d-dimensional Euclidean space and axis-parallel rectangular range queries: the k-median, k-means, and k-center range-clustering query problems. We present data structures and query algorithms that compute (1 + ε)-approximations to the optimal clusterings of P ∩Q efficiently for a qu...
متن کاملFinding Community Base on Web Graph Clustering
Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communit...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Architecture and Code Optimization
سال: 2012
ISSN: 1544-3566,1544-3973
DOI: 10.1145/2086696.2086700